Collision-Induced Electronic Energy Transfer From v=0 Of The E(0g+) Ion-Pair State In I2: Collisions With I2(X)

نویسندگان

  • Christopher J. Fecko
  • Miriam Arak Freedman
  • Thomas Alex Stephenson
  • Miriam A. Freedman
  • Thomas A. Stephenson
چکیده

The collision-induced electronic energy transfer that occurs when I 2 in the E(0 g ϩ) ion-pair electronic state collides with ground electronic state I 2 has been investigated. We prepare I 2 in single rotational levels in vϭ0 of the E state using two-color double resonance laser excitation. The resulting emission spectrum shows that the nearby (⌬T e ϭϪ385 cm Ϫ1) D(0 u ϩ) electronic state is populated. The cross section for collision-induced E→D energy transfer is found to be 18Ϯ3 Å 2. A range of D state vibrational levels are populated, consistent with a model in which overlap between the initial and final vibrational wave functions is important, but modulated by propensities for small vibrational energy gaps and those energy gaps that are closely matched to the vϭ0→vϭ1 energy separation in the I 2 (X) collision partner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rovibrational resonance effects in collision-induced electronic energy transfer: I2(E,v=0-2)+CF4.

Collisions of I2 in the E(0(g)+) electronic state with CF4 molecules induce electronic energy transfer to the nearby D, beta, and D' ion-pair states. Simulations of dispersed fluorescence spectra reveal collision-induced electronic energy transfer rate constants and final vibrational state distributions within each final electronic state. In comparison with earlier reports on I2(upsilon(E)=0-2)...

متن کامل

Collision-Induced Electronic Energy Transfer From v=0 Of The E(0+g) Ion-Pair State In I2: Collisions With He And Ar

The electronic energy transfer pathways that occur following collisions between I 2 in the E ion-pair electronic state ͑vϭ0, Jϭ55͒ and He and Ar atoms have been determined. The nearby D, DЈ, and ␤ ion-pair states are populated, but with relative branching ratios that vary with the rare gas collision partner. In He/I 2 collisions, the D state is preferentially populated, while Ar/I 2 collisions pr...

متن کامل

Franck-Condon effects in collision-induced electronic energy transfer: I2(E; v = 1,2) + He, Ar.

Collisions of I2 in the E electronic state with rare gas atoms result in electronic energy transfer to the D, beta, and D' ion-pair electronic states. Rate constants for each of these channels have been measured when I2 is initially prepared in the J = 55, nu = 1 and 2 levels in the E state. The rate constants and effective hard sphere collision cross sections confirm the trends observed when n...

متن کامل

Theoretical and experimental studies of collision-induced electronic energy transfer from v=0-3 of the E(0g +) ion-pair state of Br2: collisions with He and Ar.

Collisions of Br(2), prepared in the E(0(g)+) ion-pair (IP) electronic state, with He or Ar result in electronic energy transfer to the D, D', and beta IP states. These events have been examined in experimental and theoretical investigations. Experimentally, analysis of the wavelength resolved emission spectra reveals the distribution of population in the vibrational levels of the final electro...

متن کامل

Long-range collisional energy transfer between charge-transfer (ion-pair) states of I2, induced by H2O and I2(X).

Long-range (resonant) energy transfer, between g/u charge-transfer states of molecular iodine [i.e., f0(g) (+)((3)P(0))-->F0(u)(+)((3)P(0)) and E0(g)(+)((3)P(2))-->D0(u) (+)((3)P(2))], induced by collisions with H(2)O and I(2)(X) via multipole coupling, has been observed. Large rate constants, up to 5 x 10(-9) molecules(-1) cm(3) s(-1), for collisional transfer between a range of vibrational le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015